Phase-field modelling of 2D island growth morphology in chemical vapor deposition

The European Physical Journal E(2020)

引用 5|浏览3
暂无评分
摘要
. The rich island morphology of two-dimensional (2D) materials during chemical vapor deposition (CVD) growth process is studied using a computational model based on a Burton-Cabrera-Frank (BCF) type crystal growth theory. A previously formulated phase-field (PF) model for the BCF crystal growth process is employed to investigate the effect of various growth conditions, such as the concentration of absorbed atoms on the substrate and the growth temperature, that have been experimentally known to significantly impact the island morphology. It is shown that, within this simple model, the rich morphology of 2D islands in CVD growth can be well reproduced. With increasing substrate temperature, the 2D island changes from dendritic to compact shape. When considering the energy difference between the zigzag and the armchair edges of the 2D island, most commonly known morphologies, from quasi-sixfold compact islands to spiky triangular and compact triangular shapes, are observed in the model. Growth mechanisms associated with different island shapes and potential model improvements are also discussed. Graphical abstract
更多
查看译文
关键词
Topical issue: Branching Dynamics at the Mesoscopic Scale
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要