Imaging of Stroke in Rodents Using a Clinical Scanner and Inductively Coupled Specially Designed Receiver Coils

ANNALS OF BIOMEDICAL ENGINEERING(2020)

引用 4|浏览40
暂无评分
摘要
Imaging of small laboratory animals in clinical MRI scanners is feasible but challenging. Compared with dedicated preclinical systems, clinical scanners have relatively low B 0 field (1.5–3.0 T) and gradient strength (40–60 mT/m). This work explored the use of wireless inductively coupled coils (ICCs) combined with appropriate pulse sequence parameters to overcome these two drawbacks, with a special emphasis on the optimization of the coil passive detuning circuit for this application. A Bengal rose photothrombotic stroke model was used to induce cortical infarction in rats and mice. Animals were imaged in a 3T scanner using T2 and T1-weighted sequences. In all animals, the ICCs allowed acquisition of high-quality images of the infarcted brain at acute and chronic stages. Images obtained with the ICCs showed a substantial increase in SNR compared to clinical coils (by factors of 6 in the rat brain and 16–17 in the mouse brain), and the absence of wires made the animal preparation workflow straightforward.
更多
查看译文
关键词
Preclinical imaging, Clinical scanner, Inductively coupled coil, Wireless coil, Stroke
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要