Modelling the environmental niche space and distributions of cold-water corals and sponges in the Canadian northeast Pacific Ocean

Deep Sea Research Part I: Oceanographic Research Papers(2019)

引用 13|浏览8
暂无评分
摘要
Cold-water coral and sponge (CWCS) communities are important indicators of vulnerable marine ecosystems (VMEs) and are used to delineate areas for marine conservation and fisheries management. Although the northeast Pacific region of Canada (NEPC) is notable for having unique CWCS assemblages and is the location of >80% of Canadian seamounts, the extent of potential CWCS-defined VMEs in this region is unknown. Here, we used a diverse set of environmental data layers (n=30) representing a range of bathymetric derivatives, physicochemical variables, and water column properties to assess the primary factors influencing the niche separation and potential distributions of six habitat-forming groups of CWCS in the NEPC (sponge classes: Hexactinellida, Demospongiae; coral orders: Alcyonacea, Scleractinia, Antipatharia, Pennatulacea). The primary environmental gradients that influence niche separation among CWCS are driven by total alkalinity, dissolved inorganic carbon, and dissolved oxygen. Significant niche separation among groups indicates CWCS to be primarily specialists occurring in rare habitat conditions in the NEPC. Species distribution models (SDMs) developed for each CWCS group shared severely low dissolved oxygen levels ([O2] < 0.5 ml L−1) as a top predictor for habitat suitability in the NEPC. Niche separation is further emphasized by differences in the model-predicted areas of suitable habitat among CWCS groups. Although niches varied among taxa, the general areas of high habitat suitability for multiple CWCS groups in the NEPC occurred within the 500–1400 m bottom depth range which is strongly associated with the extensive oxygen minimum zone (OMZ) characterizing this region. As a result, the largest continuous area of potential CWCS habitat occurred along the continental slope with smaller, isolated patches also occurring at several offshore seamounts that have summits that extend into OMZ depths. Our results provide insight into the factors that influence the distributions of some of the most important habitat-forming taxa in the deep ocean and create an empirical foundation for supporting cold-water coral and sponge conservation in the NEPC.
更多
查看译文
关键词
MaxEnt,Hypoxia,Basal metazoan,Oxygen requirements,Niche
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要