On the resistive switching mechanisms of

Applied Physics Letters(2008)

引用 199|浏览6
暂无评分
摘要
We use convincing experimental evidences to demonstrate that the nonpolar resistive switching phenomenon observed in Cu/ZrO2:Cu/Pt memory devices conforms to a filament formation and annihilation mechanism. Temperature-dependent switching characteristics show that a metallic filamentary channel is responsible for the low resistance state (ON state). Further analysis reveals that the physical origin of this metallic filament is the nanoscale Cu conductive bridge. On this basis, we propose that the set process (switching from OFF state to ON state) and the reset process (switching from ON to OFF state) stem from the electrochemical reactions in the filament, in which a thermal effect is greatly involved.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要