Structural stability and electronic properties of the (0 0 0 1) inversion domain boundary in III-nitrides

Computational Materials Science(2018)

引用 0|浏览0
暂无评分
摘要
A structural investigation of (0 0 0 1) plane inversion domain boundaries (IDBs) in group III-nitrides (GaN, AlN and InN) has been carried out by means of Monte Carlo (MC) simulation of Stillinger-Weber empirical potential. Eight possible IDB configurations were found to be stable during the structural searching process. Their energetics, chemical bonding properties as well as electronic structures were further investigated using first-principle calculations based on density functional theory (DFT). The comparison of relative energetic stability revealed that the H4 configuration is the most stable structure among H (Head-to-Head type) IDBs except in AlN; as for T (Tail-to-Tail type) IDBs, T2 is more energetic favorable within all materials. The electron localization function (ELF) and the Bader population analysis clearly point out 2-dimensional hole gas (2DHG) in H IDBs and 2-dimensional electron gas (2DEG) in T IDBs. And this is ascribed to the polarization discontinuity. A detailed analysis of Projected Density of States (PDOS) shows a metallic character in all IDBs. The hybridization states at the valance band edge crossed the Fermi level in H boundaries which acts as a p dopant. For T type IDBs, the PDOS is largely extended in density with the Fermi level shifted up above the conduction band maximum (CBM) which suggests an electron excess in boundaries.
更多
查看译文
关键词
Inversion domain boundary (IDB),Group III-nitrides,DFT,Chemical bonding,Electronic structure
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要