Diverse sediment microbiota shape methane emission temperature sensitivity in Arctic lakes

Nature Communications(2021)

Cited 3|Views4
No score
Abstract
Northern post-glacial lakes are significant, increasing sources of atmospheric carbon through ebullition (bubbling) of microbially-produced methane (CH 4 ) from sediments. Ebullitive CH 4 flux correlates strongly with temperature, reflecting that solar radiation drives emissions. However, here we show that the slope of the temperature-CH 4 flux relationship differs spatially across two post-glacial lakes in Sweden. We compared these CH 4 emission patterns with sediment microbial (metagenomic and amplicon), isotopic, and geochemical data. The temperature-associated increase in CH 4 emissions was greater in lake middles—where methanogens were more abundant—than edges, and sediment communities were distinct between edges and middles. Microbial abundances, including those of CH 4 -cycling microorganisms and syntrophs, were predictive of porewater CH 4 concentrations. Results suggest that deeper lake regions, which currently emit less CH 4 than shallower edges, could add substantially to CH 4 emissions in a warmer Arctic and that CH 4 emission predictions may be improved by accounting for spatial variations in sediment microbiota.
More
Translated text
Key words
Carbon cycle,Metagenomics,Microbial ecology,Science,Humanities and Social Sciences,multidisciplinary
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined