Heating Of The Midshelf And Inner Shelf By Warm Internal Tidal Bores

JOURNAL OF PHYSICAL OCEANOGRAPHY(2020)

引用 3|浏览2
暂无评分
摘要
Cross-shore heat flux (CHF) spatiotemporal variability in the subtidal (ST), diurnal (DU), and semidiurnal (SD) bands is described for 35 days (summer 2015) from collocated vertical measures of temperature and currents obtained by moorings deployed from 50- to 7-m water depths near Pt. Sal, California. The CHF is largest in the ST and SD bands, with nearly zero contribution in the DU band. The sum of CHF and surface heat flux (SHF) account for 31% and 17% of the total change in heat storage on the midshelf and inner shelf, respectively. The ST CHF for the midshelf and inner shelf is mostly negative and is correlated with upwelling-favorable winds. A mostly positive SD CHF on the midshelf and inner shelf decreases linearly in the shoreward direction, is correlated with wind relaxations, and is attributed to warm-water internal tidal bores (WITBs) that are observed to propagate to the edge of the surf zone. A negative SD CHF is correlated with upwelling-favorable winds on the midshelf at 15-25-h time lags, and is believed to be associated with cold-water internal tidal bores. The WITBs have characteristics of progressive waves on the midshelf and transition to partially standing waves on the inner shelf potentially reducing the SD CHF contribution on the inner shelf. Heat accumulation over the midshelf and inner shelf is primarily driven by WITBs and SHF, which is largely balanced by cumulative cooling by ST processes over the midshelf and cumulative cooling by alongshore heat flux (AHF) over the inner shelf.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要