A rapidly adaptable biomaterial vaccine for SARS CoV 2

bioRxiv(2020)

引用 2|浏览21
暂无评分
摘要
The global COVID-19 pandemic motivates accelerated research to develop safe and efficacious vaccines. To address this need, we leveraged a biomaterial vaccine technology that consists of mesoporous silica rods (MSRs) that provide a sustained release of granulocyte-macrophage colony-stimulating factor (GM-CSF) and adjuvants to concentrate and mature antigen-presenting cells at the vaccine site. Here we explored the humoral responses resulting from the use of monophosphoryl lipid A (MPLA) as the adjuvant and SARS-CoV-2 spike proteins S1, S2, the nucleocapsid (N) protein, and receptor binding domain (RBD) as the target antigens. The dose of antigen and impact of pre-manufacturing of vaccines as versus loading antigen just-in-time was explored in these studies. Single shot MSR vaccines induced rapid and robust antibody titers to the presented antigens, even without the use of a boost, and sera from vaccinated animals demonstrated neutralizing activity against a SARS-CoV-2 pseudovirus. Overall, these results suggest the MSR vaccine system may provide potent protective immunity when utilized to present SARS-CoV-2 antigens.
更多
查看译文
关键词
adaptable biomaterial vaccine,sars-cov
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要