Star polymer-based nanolayers with immobilized complexes of polycationic stars and DNA for deposition gene delivery and recovery of intact transfected cells.

International journal of pharmaceutics(2020)

引用 10|浏览5
暂无评分
摘要
We designed a novel thermoresponsive system of nanolayers composed of star poly[oligo(ethylene glycol) methacrylate]s (S-POEGMA) covalently bonded to a solid support and covered with polyplexes of cationic star polymers and plasmid DNA (pDNA). S-POEGMA stars were attached to the solid support via a UV-mediated "grafting to" method. To the best of our knowledge, for the first time, the conformational changes of obtained star nanolayers, occurring with changes in temperature, were studied using a quartz crystal microbalance technique. Next, the polyplexes of star poly[N,N'-dimethylaminoethyl methacrylate-ran-di(ethylene glycol) methacrylate] (S-P(DMAEMA-DEGMA)) with pDNA, exhibiting a phase transition temperature (TCP) in culture medium DMEM, were deposited on S-POEGMA layers when the temperature increased above the TCP of polyplex. The thermoresponsivity of the system was then the main mechanism for controlling the adhesion, proliferation, transfection and detachment of HT-1080 cells. The nanolayers promoted the effective cell culture and delivered nucleic acids into cells, with a transfection efficiency several times higher than that of the control. The detachment of the transfected cells was regulated only by the change of temperature. The studies demonstrated that we obtained a novel and effective system, based on a star polymer architecture, useful for gene delivery and tissue engineering applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要