Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning

JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY(2020)

Cited 87|Views75
No score
Abstract
Purpose Microvascular invasion (MVI) is a valuable predictor of survival in hepatocellular carcinoma (HCC) patients. This study developed predictive models using eXtreme Gradient Boosting (XGBoost) and deep learning based on CT images to predict MVI preoperatively. Methods In total, 405 patients were included. A total of 7302 radiomic features and 17 radiological features were extracted by a radiomics feature extraction package and radiologists, respectively. We developed a XGBoost model based on radiomics features, radiological features and clinical variables and a three-dimensional convolutional neural network (3D-CNN) to predict MVI status. Next, we compared the efficacy of the two models. Results Of the 405 patients, 220 (54.3%) were MVI positive, and 185 (45.7%) were MVI negative. The areas under the receiver operating characteristic curves (AUROCs) of the Radiomics-Radiological-Clinical (RRC) Model and 3D-CNN Model in the training set were 0.952 (95% confidence interval (CI) 0.923–0.973) and 0.980 (95% CI 0.959–0.993), respectively ( p = 0.14). The AUROCs of the RRC Model and 3D-CNN Model in the validation set were 0.887 (95% CI 0.797–0.947) and 0.906 (95% CI 0.821–0.960), respectively ( p = 0.83). Based on the MVI status predicted by the RRC and 3D-CNN Models, the mean recurrence-free survival (RFS) was significantly better in the predicted MVI-negative group than that in the predicted MVI-positive group (RRC Model: 69.95 vs. 24.80 months, p < 0.001; 3D-CNN Model: 64.06 vs. 31.05 months, p = 0.027). Conclusion The RRC Model and 3D-CNN models showed considerable efficacy in identifying MVI preoperatively. These machine learning models may facilitate decision-making in HCC treatment but requires further validation.
More
Translated text
Key words
Hepatocellular carcinoma, Micro-vascular invasion, Deep learning, Neural network models, Radiomics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined