Recent trends in metal‐organic frameworks mediated lipase immobilization: A state‐of‐the‐art review

Food Safety and Health(2023)

Cited 0|Views11
No score
Abstract
Abstract Immobilized lipase is a powerful biocatalytic system with numerous applications in industries, particularly in the energy, pharmaceutical, cosmetic, and food industries. Reusability, simple recovery, and high chemical and thermal stability make it an attractive alternative to traditional chemical catalysts in industrial applications. Novel methods and support materials for immobilizing lipases have recently attracted much attention. Metal‐organic frameworks (MOFs) are a promising class of materials for enzyme immobilization carriers due to their appealing features, including a high specific surface area, high specific porosity, a stable framework structure, and a wide variety of functional sites. Due to the protection provided to enzymes by MOFs, several reported MOFs‐lipase composites display exceptional catalytic characteristics relative to free lipases. This includes increased enzyme efficiency, stability, selectivity, and recyclability. Herein, we summarize an updated review of the most recent advances in MOFs immobilizing lipases. This review sheds light on the numerous aspects of lipase‐MOF immobilization, with special emphasis on different techniques of designing lipase‐MOF platforms and the advantages of lipase‐MOF composites. Subsequently, molecular simulation approaches in lipase‐MOF immobilization are briefly introduced. Moreover, practical applications of MOFs‐lipase composites have been outlined. Finally, potential limitations and future directions for MOFs‐lipase immobilization research are highlighted.
More
Translated text
Key words
lipase immobilization
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined