Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs

CLINICAL ORAL INVESTIGATIONS(2020)

引用 72|浏览10
暂无评分
摘要
Objective To evaluate the performance of a new artificial intelligence (AI)-driven tool for tooth detection and segmentation on panoramic radiographs. Materials and methods In total, 153 radiographs were collected. A dentomaxillofacial radiologist labeled and segmented each tooth, serving as the ground truth. Class-agnostic crops with one tooth resulted in 3576 training teeth. The AI-driven tool combined two deep convolutional neural networks with expert refinement. Accuracy of the system to detect and segment teeth was the primary outcome, time analysis secondary. The Kruskal-Wallis test was used to evaluate differences of performance metrics among teeth groups and different devices and chi-square test to verify associations among the amount of corrections, presence of false positive and false negative, and crown and root parts of teeth with potential AI misinterpretations. Results The system achieved a sensitivity of 98.9% and a precision of 99.6% for tooth detection. For segmenting teeth, lower canines presented best results with the following values for intersection over union, precision, recall, F1-score, and Hausdorff distances: 95.3%, 96.9%, 98.3%, 97.5%, and 7.9, respectively. Although still above 90%, segmentation results for both upper and lower molars were somewhat lower. The method showed a clinically significant reduction of 67% of the time consumed for the manual. Conclusions The AI tool yielded a highly accurate and fast performance for detecting and segmenting teeth, faster than the ground truth alone. Clinical significance An innovative clinical AI-driven tool showed a faster and more accurate performance to detect and segment teeth on panoramic radiographs compared with manual segmentation.
更多
查看译文
关键词
Artificial intelligence, Machine learning, Panoramic radiography, Tooth, Classification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要