Transcriptome analysis provides new insights into the transcriptional regulation of methyl jasmonate-induced flavonoid biosynthesis in pear calli

BMC PLANT BIOLOGY(2020)

Cited 34|Views9
No score
Abstract
Background Flavonoid biosynthesis is strongly influenced by phytohormones. For example, methyl jasmonate (MeJA) enhances the flavonoid accumulation in pear. However, the molecular mechanism underlying the MeJA-induced flavonoid biosynthesis in pear is largely uncharacterized. Therefore, the transcriptome of pear calli treated with MeJA was analyzed to elucidate the mechanism regulating MeJA-mediated flavonoid biosynthesis. Results The application of exogenous MeJA significantly enhanced flavonoid accumulation, especially anthocyanin, in pear calli. A weighted gene co-expression network analysis identified the differentially expressed genes associated with MeJA-induced flavonoid biosynthesis. The MeJA treatment upregulated the expression of the flavonoid biosynthesis pathway structural genes (PcCHS,PcCHI,PcF3H,PcDFR,PcANS,PcANR2a, andPcLAR1). The MYB family members were the main transcription factors regulating the MeJA-induced flavonoid biosynthesis, but the bHLH, AP2-EREBP, NAC, WRKY, and TIFY families were also involved. In addition to PcMYB10, which is a known positive regulator of anthocyanin biosynthesis in pear, several novel MYB candidates that may regulate flavonol and proanthocyanidin biosynthesis were revealed. Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that PcMYB10 and PcMYC2 can directly interact with each other and bind to JAZ repressors (PcJAZ1 and PcJAZ2). Conclusions The PcMYB10-PcMYC2 molecular complex is likely involved in the regulation of jasmonate-mediated flavonoid biosynthesis at the transcript level. The data generated in this study may clarify the transcriptional regulatory network associated with the MeJA-induced flavonoid accumulation in pear calli and provide a solid foundation for future studies.
More
Translated text
Key words
Methyl jasmonate,Flavonoid,Transcriptome,WGCNA,PcMYB10,PcMYC2
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined