Chrome Extension
WeChat Mini Program
Use on ChatGLM

Photonic Rashba Effect from Quantum Emitters Mediated by a Berry-phase Defective Photonic Crystal

Nature nanotechnology(2020)

Cited 37|Views17
No score
Abstract
Heterostructures combining a thin layer of quantum emitters and planar nanostructures enable custom-tailored photoluminescence in an integrated fashion. Here, we demonstrate a photonic Rashba effect from valley excitons in a WSe 2 monolayer, which is incorporated into a photonic crystal slab with geometric phase defects, that is, into a Berry-phase defective photonic crystal. This phenomenon of spin-split dispersion in momentum space arises from a coherent geometric phase pickup assisted by the Berry-phase defect mode. The valley excitons effectively interact with the defects for site-controlled excitation, photoluminescence enhancement and spin-dependent manipulation. Specifically, the spin-dependent branches of photoluminescence in momentum space originate from valley excitons with opposite helicities and evidence the valley separation at room temperature. To further demonstrate the versatility of the Berry-phase defective photonic crystals, we use this concept to separate opposite spin states of quantum dot emission. This spin-enabled manipulation of quantum emitters may enable highly efficient metasurfaces for customized planar sources with spin-polarized directional emission.
More
Translated text
Key words
Metamaterials,Nanophotonics and plasmonics,Materials Science,general,Nanotechnology,Nanotechnology and Microengineering
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined