A Cost Effective Method For Immobilization Of Cu And Ni Polluted River Sediment With Nzvi Synthesized From Leaf Extract

CHEMOSPHERE(2021)

Cited 21|Views9
No score
Abstract
This study investigates the performance of oak (OL) and mulberry (ML) leaves for synthesized of nanoscale zero-valent iron (nZVI), in immobilizing Cu and Ni in contaminated sediment. Characterization of synthesized Fe nanoparticles from oak and mulberry leaf extracts demonstrated that they are nontoxic and stabile nanomaterials for application in the sediment remediation. Effectiveness of stabilization process was performed by microwave-assisted sequential extraction procedure (MWSE) and single-step leaching tests which have been applied to evaluate the metal extraction potential. This research showed that OL-nZVI and ML-nZVI were effective in transforming available Cu and Ni to stable fraction. The maximum residual percentage of Cu increased by 76% and 73%, and for Ni 81% and 80%, respectively, with addition of 5% OL-nZVI and 5% ML-nZVI. Used single-step leaching tests (Toxicity Characteristic Leaching Procedure-TCLP and German standard test- DIN) indicated that all stabilized samples can be considered as non-hazardous waste, as all leached metal concentrations met the appropriate set criteria. Cost analysis showed that the operating cost for contaminated sediment treatment with green synthesized nZVI are 50.37 V/m(3)/per year. This work provides a new insight into the immobilization mechanism and environmental impact of Cu and Ni in contaminated sediment and potential way of treatment with OL-nZVI and ML-nZVI. Generally, nZVI can be an effective and versatile tool for stabilization of sediment polluted with toxic metals. (C) 2020 Elsevier Ltd. All rights reserved.
More
Translated text
Key words
Green synthesized nano zero-valent iron, Stabilization, Contaminated sediment, Metals
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined