A sodium alginate-based nano-pesticide delivery system for enhanced in vitro photostability and insecticidal efficacy of phloxine B.

Carbohydrate polymers(2020)

Cited 30|Views29
No score
Abstract
To improve in vitro photostability and enhance insecticidal activity, a novel esterase/glutathione (GSH) responsive photoactivated nano-pesticide delivery system was synthesized by conjugation of photoactivated pesticide phloxine B(PB) to sodium alginate (SA) via esterase/GSH sensitive phenolic ester bond followed by ultrasonic dispersion. The system was stable in PBS (pH 7.4) and could protect effectively the conjugated PB from in vitro photodegradation because of aggregation-caused quenching effect, whose maximum photodegradation rate did not exceed 10 % after 270 min illumination. However, upon exposure to esterase-6 or GSH stimulus, high photoactivity was observed due to the destruction of the system and accompanied by PB release. The combined stimulation could trigger more PB release than any single stimulus and thus resulting in a higher photoactivity. Compared with free PB, The system showed a higher phototoxicity on Sf9 insect cells and the in vitro light exposure had little influence on the phototoxicity.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined