Auxinic herbicide conjugates with an α-amino acid function: Structural requirements for biological activity on motor cells.

PLANT PHYSIOLOGY AND BIOCHEMISTRY(2020)

引用 3|浏览5
暂无评分
摘要
Two Fabaceae exhibiting rapid osmocontractile pulvinar movements were used in this study because this activity is modified by natural auxin and dramatically by 2,4D. A short chain with a carboxylic group being required for auxinic properties, a critical point to analyze is whether the recently synthesized proherbicide epsilon-(2,4-dichlorophenoxyacetyl)-L-Lys (2-4D-L-Lys) maintains some biological activity despite the increase in length of the chain and the substitution of the carboxyl group by an alpha-amino acid function. No trace of 2,4D could be detected in the pulvinar tissues treated for 1 h with 2,4D-L-Lys. Complementary approaches (electrophysiology, pH measurements, use of plasma membrane vesicles) suggest that it was less efficient than 2,4D to activate the plasma membrane H+-ATPase (PM-H+-ATPase). However, it modified the various ion-driven reactions of Mimosa pudica and Cassia fasciculata pulvini in a similar way as 2,4D. Additionally, it was much more effective than fusicoccin to inhibit seismonastic movements of M. pudica leaves and, at low concentrations, to promote leaflet opening in dark, indicating that its mode of action is more complex than the only activation of the PM-H+-ATPase. Various substitutions on 2,4D-L-Lys affected its activity in correlation with the molecular descriptor "halogen ratio" of these derivatives. Conjugation with D-Lys also led to a decrease of pulvinar reaction, suggesting that 2,4D-Lys maintains the main signaling properties of 2,4D involved in pulvinar movements providing that the terminal zwitterion is in a suitable orientation. Our data guide future investigations on the effect of 2,4D and 2,4D-L-Lys on the vacuolar pump activity of motor cells.
更多
查看译文
关键词
Amino acid conjugate,Fusicoccin,Ion driven reactions,Motor cells,PM-H+-ATPase,Synthetic auxin,Vacuolar membrane
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要