A PD-1 peptide antagonist exhibits potent anti-tumor and immune regulatory activity.

CANCER LETTERS(2020)

Cited 6|Views11
No score
Abstract
Antibodies blocking the PD-1/PD-L1 pathway have achieved great success. However, some disadvantages of antibodies have been found, which limit their clinical applications. Peptide antagonists are alternatives to antibodies in PD-1/PD-L1 blockage, but successful studies in this area are limited. A PD-1 targeting peptide, P-F4, was identified using phage display. P-F4 bound PD-1 with an affinity of 0.119 mu M, inhibited PD-1/PD-L1 interaction at the cellular level and modulated T cell activity in vitro. We have overcome the poor solubility and rapid degradation problems of this peptide by packaging P-F4 in nanoparticles. In vivo experiments demonstrated that P-F4 nanoparticles could strongly inhibit tumor growth in a CT26 mouse model. Further research revealed that treatment of P-F4 nanoparticles increased CD8+T cells and reduced Tregs in the tumor microenvironment and tumor-draining lymph nodes. It was shown that treatment of P-F4 nanoparticles also increased lymphocytic activities, including proliferation, cytokine secretion and cytolytic activity. Moreover, computer modeling suggested that the P-F4 binding site to PD-1 overlaps with the PD-L1 binding surface. In this study, a peptide candidate for cancer immunotherapy was provided, and its working mechanisms were studied.
More
Translated text
Key words
Cancer immunotherapy,Phage display,Tumor microenvironment,Tumor-draining lymph nodes,Computer modeling
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined