Suspension Jams in a Leaky Microfluidic Channel

PHYSICAL REVIEW LETTERS(2020)

引用 3|浏览9
暂无评分
摘要
Inspired by the jamming in leaky systems that arises in many physiological and industrial settings, we study the propagation of clogs in a leaky microfluidic channel. By driving a colloidal suspension through such a channel with a fluid-permeable wall adjoining a gutter, we follow the formation and propagation of jams and show that they move at a steady speed, in contrast with jams in channels that have impermeable walls. Furthermore, by varying the ratio of the resistance from the leaky wall and that of the gutter, we show that it is possible to control the shape of the propagating jam, which is typically wedge shaped. We complement our experiments with numerical simulations, where we implement an Euler-Lagrangian framework for the simultaneous evolution of both immersed colloidal particles and the carrier fluid. Finally, we show that the particle ordering in the clog can be tuned by adjusting the geometry of the leaky wall. Altogether, the leaky channel serves both as a filter and a shunt with the potential for a range of uses.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要