谷歌浏览器插件
订阅小程序
在清言上使用

A Hybrid Brain-Computer Interface for Closed-Loop Position Control of a Robot Arm

IEEE-CAA JOURNAL OF AUTOMATICA SINICA(2020)

引用 30|浏览6
暂无评分
摘要
Brain-Computer interfacing (BCI) has currently added a new dimension in assistive robotics. Existing brain-computer interfaces designed for position control applications suffer from two fundamental limitations. First, most of the existing schemes employ open-loop control, and thus are unable to track positional errors, resulting in failures in taking necessary online corrective actions. There are examples of a few works dealing with closed-loop electroencephalography (EEG)-based position control. These existing closed-loop brain-induced position control schemes employ a fixed order link selection rule, which often creates a bottleneck preventing time-efficient control. Second, the existing brain-induced position controllers are designed to generate a position response like a traditional first-order system, resulting in a large steady-state error. This paper overcomes the above two limitations by keeping provisions for steady-state visual evoked potential (SSVEP) induced link-selection in an arbitrary order as required for efficient control and generating a second-order response of the position-control system with gradually diminishing overshoots/undershoots to reduce steady-state errors. Other than the above, the third innovation is to utilize motor imagery and P300 signals to design the hybrid brain-computer interfacing system for the said application with gradually diminishing error-margin using speed reversal at the zero-crossings of positional errors. Experiments undertaken reveal that the steady-state error is reduced to 0.2%. The paper also provides a thorough analysis of the stability of the closed-loop system performance using the Root Locus technique.
更多
查看译文
关键词
Brain-computer interfacing (BCI),electroencephalography (EEG),Jaco robot arm,motor imagery,P300,steady-state visually evoked potential (SSVEP)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要