Architecture And Function Of Nmda Receptors: An Evolutionary Perspective

JOURNAL OF PHYSIOLOGY-LONDON(2021)

引用 36|浏览1
暂无评分
摘要
Ionotropic glutamate receptors (iGluRs) are a major class of ligand-gated ion channels that are widespread in the living kingdom. Their critical role in excitatory neurotransmission and brain function of arthropods and vertebrates has made them a compelling subject of interest for neurophysiologists and pharmacologists. This is particularly true for NMDA receptor (NMDARs), a subclass of iGluRs that act as central drivers of synaptic plasticity in the CNS. How and when the unique properties of NMDARs arose during evolution, and how they relate to the evolution of the nervous system, remain open questions. Recent years have witnessed a boom in both genomic and structural data, such that it is now possible to analyse the evolution of iGluR genes on an unprecedented scale and within a solid molecular framework. In this review, combining insights from phylogeny, atomic structure and physiological and mechanistic data, we discuss how evolution of NMDAR motifs and sequences shaped their architecture and functionalities. We trace differences and commonalities between NMDARs and other iGluRs, emphasizing a few distinctive properties of the former regarding ligand binding and gating, permeation, allosteric modulation and intracellular signalling. Finally, we speculate on how specific molecular properties of iGuRs arose to supply new functions to the evolving structure of the nervous system, from early metazoan to present mammals.
更多
查看译文
关键词
evolution, glutamate receptors, ligand-gated ion channels, neurotransmission, NMDA, synapse
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要