谷歌浏览器插件
订阅小程序
在清言上使用

Engineering a Histone Reader Protein by Combining Directed Evolution, Sequencing, and Neural Network Based Ordinal Regression

JOURNAL OF CHEMICAL INFORMATION AND MODELING(2020)

引用 7|浏览7
暂无评分
摘要
Directed evolution is a powerful approach for engineering proteins with enhanced affinity or specificity for a ligand of interest but typically requires many rounds of screening/library mutagenesis to obtain mutants with desired properties. Furthermore, mutant libraries generally only cover a small fraction of the available sequence space. Here, for the first time, we use ordinal regression to model protein sequence data generated through successive rounds of sorting and amplification of a proteinligand system. We show that the ordinal regression model trained on only two sorts successfully predicts chromodomain CBX1 mutants that would have stronger binding affinity with the H3K9me3 peptide. Furthermore, we can extract the predictive features using contextual regression, a method to interpret nonlinear models, which successfully guides identification of strong binders not even present in the original library. We have demonstrated the power of this approach by experimentally confirming that we were able to achieve the same improvement in binding affinity previously achieved through a more laborious directed evolution process. This study presents an approach that reduces the number of rounds of selection required to isolate strong binders and facilitates the identification of strong binders not present in the original library.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要