谷歌Chrome浏览器插件
订阅小程序
在清言上使用

Melatonin inhibits the apoptosis of rooster Leydig cells by suppressing oxidative stress via AKT-Nrf2 pathway activation.

Free radical biology & medicine(2020)

引用 26|浏览21
暂无评分
摘要
Oxidative stress has been described as a key driver of Leydig cell apoptosis. Melatonin has antioxidative and antiapoptotic effects, but the potential effects and mechanism of melatonin on oxidative stress and apoptosis in rooster Leydig cells remain unclear. Our results showed that melatonin biosynthetic enzymes and melatonin receptors were expressed in rooster Leydig cells and their expression were locally inhibited as rooster sexual maturation. We found that melatonin inhibited H2O2-induced apoptosis of rooster Leydig cell by activating the melatonin receptors Mel-1a and Mel-1b. Additionally, melatonin protects mitochondria from damage by reducing the level of oxidative stress in Leydig cells. Melatonin relieved H2O2-induced oxidative stress by significantly reducing intracellular ROS, MDA and 8-OHdG levels and increasing SOD and GSH-Px activities. Simultaneously, melatonin significantly reduced H2O2-induced depolarization of ΔΨm and decreased the release of Cytochrome C and Ca2+. We also observed that melatonin activated the Nrf2 pathway, while Nrf2 silencing abrogated the anti-oxidative and anti-apoptotic effects of melatonin in rooster Leydig cells. Furthermore, melatonin promoted the phosphorylation of AKT, while AKT inhibitor suppressed the Nrf2 pathway activated by melatonin and alleviated the inhibitory effects of melatonin on apoptosis and oxidative stress. In conclusion, melatonin could inhibit apoptosis in rooster Leydig cells by suppressing oxidative stress via activation of the AKT-Nrf2 pathway.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要