Production of Paralytic Shellfish Toxins (PSTs) in Toxic Alexandrium catenella is Intertwined with Photosynthesis and Energy Production.

TOXINS(2020)

Cited 10|Views15
No score
Abstract
To investigate the mechanism for the production of paralytic shellfish toxins (PST) in toxic dinoflagellates, with a 2D-gel based approach, we had made two sets of proteomic comparisons: (a) between a toxicAlexandrium catenella(AC-T) and a phylogenetically closely related non-toxic strain (AC-N), (b) between toxic AC-T grown in a medium with 10% normal amount of phosphate (AC-T-10%P) known to induce higher toxicity and AC-T grown in normal medium. We found that photosynthesis and energy production related proteins were up-regulated in AC-T when compared to AC-N. However, the same group of proteins was down-regulated in AC-T-10%P when compared to normal AC-T. Examining the relationship of photosynthesis and toxin content of AC-T upon continuous photoperiod experiment revealed that while growth and associated toxin content increased after 8 days of continuous light, toxin content maintained constant when cells were shifted from continuous light to continuous dark for 3 days. This emphasized the cruciality of light availability on toxin biosynthesis in AC-T, while another light-independent mechanism may be responsible for higher toxicity in AC-T-10%P compared to normal AC-T. Taken all together, it is believed that the interplay between "illumination", "photosynthesis", "phosphate availability", and "toxin production" is much more complicated than what we had previously anticipated.
More
Translated text
Key words
Alexandrium catenella,paralytic shellfish toxins,PSTs,light availability,phosphate limitation,proteomics
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined