Magnonic superradiant phase transition

Communications Physics(2022)

Cited 14|Views51
No score
Abstract
In the superradiant phase transition (SRPT), coherent light and matter fields are expected to appear spontaneously in a coupled light–matter system in thermal equilibrium. However, such an equilibrium SRPT is forbidden in the case of charge-based light–matter coupling, known as no-go theorems. Here, we show that the low-temperature phase transition of ErFeO3 at a critical temperature of approximately 4 K is an equilibrium SRPT achieved through coupling between Fe3+ magnons and Er3+ spins. By verifying the efficacy of our spin model using realistic parameters evaluated via terahertz magnetospectroscopy and magnetization experiments, we demonstrate that the cooperative, ultrastrong magnon–spin coupling causes the phase transition. In contrast to prior studies on laser-driven non-equilibrium SRPTs in atomic systems, the magnonic SRPT in ErFeO3 occurs in thermal equilibrium in accordance with the originally envisioned SRPT, thereby yielding a unique ground state of a hybrid system in the ultrastrong coupling regime. Superradiant phase transitions, predicted to occur in the ultra-strong light-matter coupling regime, may offer a route to robust quantum coherence but have not yet been observed at thermal equilibrium. Here, such a transition is predicted in ErFeO3 at about 4 K, revealing unique ground state properties.
More
Translated text
Key words
Phase transitions and critical phenomena,Quantum mechanics,Quantum optics,Physics,general
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined