Eco-physiological processes are more sensitive to simulated N deposition in leguminous forbs than non-leguminous forbs in an alpine meadow of the Qinghai-Tibetan Plateau.

The Science of the total environment(2020)

引用 9|浏览30
暂无评分
摘要
Increased nitrogen (N) deposition can affect ecosystem processes and thus influence plant eco-physiological processes in grasslands. However, how N deposition affects eco-physiological processes of leguminous and non-leguminous forbs in alpine grasslands is understudied. A long-term field experiment using a range of simulated N deposition rates (0, 8, 24, 40, 56, and 72 kg N ha-1 year-1) was established to examine the effects of N deposition on various eco-physiological parameters in leguminous and non-leguminous forbs in an alpine meadow of the Qinghai-Tibetan Plateau. We found that the responses of leguminous and non-leguminous forbs to simulated N deposition varied. Net photosynthetic rate of leguminous and non-leguminous forbs exhibited different response patterns, but chronic increases in simulated N deposition rates may lead to negative effects in both functional groups. Neither functional group responded differently in aboveground biomass under the highest N addition level (72 kg N ha-1 year-1) compared to the control. Differences in aboveground biomass of leguminous forbs were observed at intermediate N levels. Short-term simulated N deposition significantly promoted N uptake of both functional groups. In leguminous forbs, simulated N deposition affected net photosynthetic rates (PN) and aboveground biomass (AGB) mainly via stomatal conductance (gs), water use efficiency (WUE), and plant N uptake. In non-leguminous forbs, simulated N deposition affected PN and AGB mainly through WUE and plant N uptake. Our findings suggest that leguminous and non-leguminous forbs have differential response mechanisms to N deposition, and compared with non-leguminous forbs, leguminous forbs are more sensitive to continuing increased N deposition. The obvious decline trend in photosynthetic capacity in leguminous forbs is likely to exacerbate the already divergent ecological processes between leguminous and non-leguminous forbs. More importantly, these changes are likely to alter the future composition, function, and stability of alpine meadow ecosystems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要