Geographic mapping of Enterobacteriaceae with extended-spectrum β-lactamase (ESBL) phenotype in Pereira, Colombia

BMC Infectious Diseases(2020)

Cited 9|Views3
No score
Abstract
Background Antimicrobial resistance is an ecological and multicausal problem. Infections caused by extended-spectrum β-lactamase producing Enterobacteriaceae (ESBL-E) can be acquired and transmitted in the community. Data on community-associated ESBL-E infections/colonizations in Colombia are scarce. Georeferencing tools can be used to study the dynamics of antimicrobial resistance at the community level. Methods We conducted a study of geographic mapping using modern tools based on geographic information systems (GIS). Two study centers from the city of Pereira, Colombia were involved. The records of patients who had ESBL-producing Enterobacteriaceae were reviewed. Antimicrobial susceptibility testing and phenotypic detection of ESBL was done according to CLSI standards. Results A population of 415 patients with community-acquired infections/colonizations and 77 hospital discharges were obtained. Geographic distribution was established and heat maps were created. Several hotspots were evidenced in some geographical areas of the south-west and north-east of the city. Many of the affected areas were near tertiary hospitals, rivers, and poultry industry areas. Conclusions There are foci of antimicrobial resistance at the community level. This was demonstrated in the case of antimicrobial resistance caused by ESBL in a city in Colombia. Causality with tertiary hospitals in the city, some rivers and the poultry industry is proposed as an explanation of the evidenced phenomenon. Geographic mapping tools are useful for monitoring antimicrobial resistance in the community.
More
Translated text
Key words
Geographic mapping, Geographic information systems, Antimicrobial drug resistance, Extended spectrum β-lactamase (ESBL)
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined