Miniaturization Of The Superconducting Memory Cell Via A Three-Dimensional Nb Nano-Superconducting Quantum Interference Device

ACS NANO(2020)

Cited 9|Views51
No score
Abstract
Scalable memories that can match the speeds of superconducting logic circuits have long been desired to enable a superconducting computer. A superconducting loop that includes a Josephson junction can store a flux quantum state in picoseconds. However, the requirement for the loop inductance to create a bistate hysteresis sets a limit on the minimal area occupied by a single memory cell. Here, we present a miniaturized superconducting memory cell based on a three-dimensional (3D) Nb nano-superconducting quantum interference device (nano-SQUID). The major cell area here fits within an 8 X 9 mu m(2) rectangle with a cross-selected function for memory implementation. The cell shows periodic tunable hysteresis between two neighboring flux quantum states produced by bias current sweeping because of the large modulation depth of the 3D nano-SQUID (similar to 66%). Furthermore, the measured current-phase relations (CPRs) of nano-SQUIDs are shown to be skewed from a sine function, as predicted by theoretical modeling. The skewness and the critical current of 3D nano-SQUIDs are linearly correlated. It is also found that the hysteresis loop size is in a linear scaling relationship with the CPR skewness using the statistics from characterization of 26 devices. We show that the CPR skewness range of pi/4-3 pi/4 is equivalent to a large loop inductance in creating a stable bistate hysteresis for memory implementation. Therefore, the skewed CPR of 3D nano-SQUID enables further superconducting memory cell miniaturization by overcoming the inductance limitation of the loop area.
More
Translated text
Key words
3D nano-SQUID, superconducting memory, current-phase relation, flux quantum, tunable hysteresis
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined