Engineering The Phases And Heterostructures Of Ultrathin Hybrid Perovskite Nanosheets

ADVANCED MATERIALS(2020)

Cited 30|Views45
No score
Abstract
Low-dimensional perovskites have gained increasing attention recently, and engineering their material phases, structural patterning and interfacial properties is crucial for future perovskite-based applications. Here a phase and heterostructure engineering on ultrathin perovskites, through the reversible cation exchange of hybrid perovskites and efficient surface functionalization of low-dimensional materials, is demonstrated. Using PbI(2)as precursor and template, perovskite nanosheets of varying thickness and hexagonal shape on diverse substrates is obtained. Multiple phases, such as PbI2, MAPbI(3)and FAPbI(3), can be flexibly designed and transformed as a single nanosheet. A perovskite nanosheet can be patterned using masks made of 2D materials, fabricating lateral heterostructures of perovskite and PbI2. Perovskite-based vertical heterostructures show strong interfacial coupling with 2D materials. As a demonstration, monolayer MoS2/MAPbI(3)stacks give a type-II heterojunction. The ability to combine the optically efficient perovskites with versatile 2D materials creates possibilities for new designs and functionalities.
More
Translated text
Key words
2D materials, cation exchange, heterostructures, hybrid perovskites, phase engineering
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined