Unruh and analogue Unruh temperatures for circular motion in 3+1 and 2+1 dimensions

arxiv(2023)

引用 20|浏览18
暂无评分
摘要
The Unruh effect states that a uniformly linearly accelerated observer with proper acceleration $a$ experiences Minkowski vacuum as a thermal state in the temperature $T_{\text{lin}} = a/(2\pi)$, operationally measurable via the detailed balance condition between excitation and de-excitation probabilities. An observer in uniform circular motion experiences a similar Unruh-type temperature $T_{\text{circ}}$, operationally measurable via the detailed balance condition, but $T_{\text{circ}}$ depends not just on the proper acceleration but also on the orbital radius and on the excitation energy. We establish analytic results for $T_{\text{circ}}$ for a massless scalar field in $3+1$ and $2+1$ spacetime dimensions in several asymptotic regions of the parameter space, and we give numerical results in the interpolating regions. In the ultrarelativistic limit, we verify that in $3+1$ dimensions $T_{\text{circ}}$ is of the order of $T_{\text{lin}}$ uniformly in the energy, as previously found by Unruh, but in $2+1$ dimensions $T_{\text{circ}}$ is significantly lower at low energies. We translate these results to an analogue spacetime nonrelativistic field theory in which the circular acceleration effects may become experimentally testable in the near future. We establish in particular that the circular motion analogue Unruh temperature grows arbitrarily large in the near-sonic limit, encouragingly for the experimental prospects, but the growth is weaker in effective spacetime dimension $2+1$ than in $3+1$.
更多
查看译文
关键词
analogue unruh temperatures,circular motion unruh
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要