Synthesis of cellulose carbon aerogel via combined technology of wet ball-milling and TEMPO-mediated oxidation and its supersorption performance to ionic dyes.

Bioresource technology(2020)

引用 20|浏览11
暂无评分
摘要
In this study, modified cellulose aerogels (CAs) were obtained via wet ball-milling and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation and were further applied to prepare cellulose-derived carbon aerogels (CCAs) by pyrolyzing. The results showed that the successive treatments by ball-milling and oxidation completely opened the CA fibers and converted them into plane or wrinkle structures. CCAs contained porous and graphite-like structures and its specific surface area reached up to 2825 m2/g. The maximum adsorption capacities of CCAs were 1078 mg/g for methylene blue (MB) and 644 mg/g for alizarin reds (ARS). The sorption of dyes occurred via hydrophobic partition, pore-filling, H-bonding, p/π-π electron donor-acceptor interactions. For the cationic MB, electrostatic attraction reinforced the sorption, while the electrostatic repulsion between the anionic ARS and CCAs was weakened by high salty. Besides, CCAs showed excellent salt tolerance. The present study provides an excellent CCA adsorbent by successive modification of ball-milling and oxidation of CAs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要