Ultrafast nanoimaging of the order parameter in a structural phase transition.

SCIENCE(2021)

Cited 99|Views16
No score
Abstract
Understanding microscopic processes in materials and devices that can be switched by light requires experimental access to dynamics on nanometer length and femtosecond time scales. Here, we introduce ultrafast dark-field electron microscopy to map the order parameter across a structural phase transition. We use ultrashort laser pulses to locally excite a 1T-TaS2 (1T-polytype of tantalum disulfide) thin film and image the transient state of the specimen by ultrashort electron pulses. A tailored dark-field aperture array allows us to track the evolution of charge-density wave domains in the material with simultaneous femtosecond temporal and 5-nanometer spatial resolution, elucidating relaxation pathways and domain wall dynamics. The distinctive benefits of selective contrast enhancement will inspire future beam-shaping technology in ultrafast transmission electron microscopy.
More
Translated text
Key words
ultrafast nanoimaging,structural phase transition,order parameter
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined