Removing Administrative Boundaries Using A Gravity Model For A National Liver Allocation System

AMERICAN JOURNAL OF TRANSPLANTATION(2021)

引用 2|浏览45
暂无评分
摘要
Geographic disparities emerged as an increasing issue in organ allocation policies. Because of the sequential and discrete geographical models used for allocation scores, artificial regional boundaries may impede the access of candidates with the greatest medical urgency to vital organs. This article describes a continuous geographical allocation model that provides accurate organ access by introducing a multiplicative interaction between the patient's condition and the distance to the graft by using a gravity model. Patients with the most urgent need will thus have access to organs from farther away, while those in less urgent need may only have access to organs geographically closer. Compared to the previous French liver allocation scheme, the gravity model precluded transplantations for candidates with a Model for End-Stage Liver Disease (MELD) <= 14 for decompensated cirrhosis from 10.3% to 0.6%. Death and delisting while on the waiting list at 1 year also decreased from 30.1% to 22.4% for MELD >= 35. Waiting list (cumulative hazard ratio (CHR) 0.84 after adjustment) and posttransplant survival improved significantly (hazard ratio = 0.83 after adjustment). This new liver allocation system provides more equitable access to liver transplants and an efficient and safe alternative to administrative boundaries for geographical models in organ allocation.
更多
查看译文
关键词
health services and outcomes research, liver transplantation, hepatology, mathematical model, organ allocation, organ procurement and allocation, Organ Procurement Organization, statistics, translational research, science
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要