Impact Of Quark Quasiparticles On Transport Coefficients In Hot Qcd

PHYSICAL REVIEW D(2021)

引用 13|浏览0
暂无评分
摘要
We study the bulk and shear viscosity and the electrical conductivity in a quasiparticle approach to Yang-Mills theory and QCD with light and strange quarks to assess the dynamical role of quarks in transport properties at finite temperature. The interactions with a hot medium are embodied in effective masses of the constituents through a temperature-dependent running coupling extracted from the lattice QCD thermodynamics. In Yang-Mills theory, the bulk viscosity to entropy density ratio exhibits a nonmonotonous structure around the phase transition temperature. In QCD, this is totally dissolved because of a substantial contribution from quark quasiparticles. The bulk to shear viscosity ratio near the phase transition behaves consistently to the scaling with the speed of sound derived in the AdS/CFT approach, whereas at high temperature it obeys the same parametric dependence as in perturbation theory. Thus, the employed quasiparticle model is adequate to capture the transport properties in the weak and strong coupling regimes of the theory. This feature is not altered by including dynamical quarks which, however, retards the system from restoring conformal invariance. We also examine the individual flavor contributions to the electrical conductivity and show that the obtained behavior agrees qualitatively well with the recent results of lattice simulations and with a class of phenomenological approaches.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要