Linking fluid dynamics and olivine crystal scale zoning during simulated magma intrusion

Contributions to Mineralogy and Petrology(2020)

引用 23|浏览2
暂无评分
摘要
The compositional zoning styles of natural crystals produced during magma intrusion can be used to investigate the structure of magmatic plumbing systems and its relation to expressions of volcanic unrest (seismic, deformation, volatiles). However, magma intrusion is a progressive, dynamic process and yields non-monotonic heterogeneities in physio-chemical variables such as complex spatial variations in temperature and liquid composition with time. Such changes in variables are difficult to incorporate in models of crystal zoning in natural systems. Here we take another approach by integrating the results of a numerical multiphase simulation of melt arrival in an olivine-rich reservoir with models of chemical re-equilibration of olivine. We evaluate the diversity of chemical zoning styles and the inferred time scales using Fe–Mg diffusion in olivine for a limited range of system geometries and time-composition-temperature values. Although our models are still a large simplification of the processes that may occur in natural systems we find several time-dependent and systematic relations between variables that can be used to better interpret natural data. The proportions of zoned and unzoned crystals, the zoning length scales, and the calculated diffusion times from the crystals, vary with time and the initial position of the crystal in the reservoir. These relationships can be used, for example, to better constrain the plumbing structure and dynamics of mafic eruptions from monogenetic volcanoes by detailed studies of changes in the zoning of the crystal cargo with eruptive sequence. Moreover, we also find that the time scales obtained from modeling of crystals at a single temperature and boundary condition tend to be shorter (> about 25%) than the residence time, which could also be tested in natural studies by combining crystal time scale records with monitoring datasets.
更多
查看译文
关键词
Olivine,Modeling,Timescale,Crystal zoning,Eruption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要