Centralized Unmanned Aerial Vehicle (UAV) Mesh Networks Placement Scheme: A Multi-Objective Evolutionary Algorithm Approach

semanticscholar(2018)

引用 25|浏览0
暂无评分
摘要
In the past, Unmanned Aerial Vehicles (UAVs) were mostly used in the military operations to prevent pilot losses. Nowadays, the fast technological evolution enables the production of a class of cost-effective UAVs which can service a plethora of public and civilian applications, specially when configured to work cooperatively to accomplish a task. However, designing a communication network among the UAVs is challenging task. In this article, we propose a centralized UAV placement strategy, where UAVs are used as flying access points forming a mesh network, providing connectivity to ground nodes deployed in a target area. The geographical placement of UAVs is optimized based on a Multi-Objective Evolutionary Algorithm (MOEA). The goal of the proposed scheme is to cover all ground nodes using a minimum number of UAVs, while maximizing the fulfillment of their data rate requirements. The UAVs can employ different data rates depending on the channel conditions, which are expressed by the Signal-to-Noise-Ratio (SNR). In this work, elitist Non-Dominated Sorting Genetic Algorithm II (NSGA-II) is used to find a set of optimal positions to place UAVs, given the positions of the ground nodes. We evaluate the trade-off between the number of UAVs used to cover the target area and the data rate requirement of the ground nodes. Simulation results show that the proposed algorithm can optimize the UAV placement given the requirement and the positions of the ground nodes in the geographical area.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要