Deposited in DRO : 01 September 2017 Version of attached le : Published Version Peer-review status of attached le :

R. Agnese,Adam J. Anderson, Durdana Nazim Balakishiyeva,Ritoban Basu Thakur, Daniel Bauer,A. W. Borgland, Dan Brandt,Paul L. Brink,R. Bunker,Blas Cabrera,David O. Caldwell,David G. Cerdeno,H. Chagani,M. Cherry,Jodi Cooley,B. Cornell, H. C., Crewdson,P. Cushman,Miguel Daal,P. Di Stefano,Todd Doughty,L. Esteban,S. Fallows,Enectali Figueroa-Feliciano,J. Fox,M. Fritts, Gary Lunt Godfrey, Sunil Ramanlal Golwala,J. Hall, Herbert R. Harris,J. Hasi,S. A. Hertel,Bruce A. Hines,Thomas S. Hofer, Daniel Holmgren,L. Hsu, Mark Edward Huber,A. Jastram, O. I. Kamaev, Birol Kara, Michael Henderson Kelsey,A. S., Kenany,A. Kennedy, Christopher John Kenney,M. Kiveni, Karsten Koch,B. Loer,Elias López Asamar, Ranjita Mahapatra,V. Mandic, C., Mart́ınez,K. A. McCarthy,Nader Mirabolfathi,Robert A. Moffatt, David C. Moore, Philippe Nadeau, Robert Howard Nelson, Lenka Novak, K., Pagé, Richard Partridge, Mark D Pepin, Andrew Phipps,K. Prasad,M. Pyle,H. Qiu, Roxanne Radpour, Weldon W. Rau, Pál Redl, Anna Reisetter, R. W. Resch,Y. Ricci,Tarek Saab,Bernard Sadoulet,J. Sander,R. L. Schmitt,K. Schneck,Richard W. Schnee,Silvia Scorza, D., Seitz,Bruno Serfass,B. Shank,Daniel Speller,Astrid Tomada, Anthony N Villano,B. Welliver,Dennis H. Wright,S. Yellin, Jeffrey J. Yen

semanticscholar(2017)

引用 0|浏览10
暂无评分
摘要
We make use of a catalog of 1600 Pan-STARRS1 groups produced by the probability friends-of-friends algorithm to explore how the galaxy properties, i.e., the specific star formation rate (SSFR) and quiescent fraction, depend on stellar mass and group-centric radius. The work is the extension of Lin et al. In this work, powered by a stacking technique plus a background subtraction for contamination removal, a finer correction and more precise results are obtained than in our previous work. We find that while the quiescent fraction increases with decreasing groupcentric radius, the median SSFRs of star-forming galaxies in groups at fixed stellar mass drop slightly from the field toward the group center. This suggests that the main quenching process in groups is likely a fast mechanism. On the other hand, a reduction in SSFRs by∼0.2 dex is seen inside clusters as opposed to the field galaxies. If the reduction is attributed to the slow quenching effect, the slow quenching process acts dominantly in clusters. In addition, we also examine the density–color relation, where the density is defined by using a sixth-nearest-neighbor approach. Comparing the quiescent fractions contributed from the density and radial effect, we find that the density effect dominates the massive group or cluster galaxies, and the radial effect becomes more effective in less massive galaxies. The results support mergers and/or starvation as the main quenching mechanisms in the group environment, while harassment and/or starvation dominate in clusters.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要