Building a High-Performance Metadata Service by Reusing Scalable I / O Bandwidth

semanticscholar(2013)

引用 0|浏览1
暂无评分
摘要
Modern parallel and cluster file systems provide highly scalable I/O bandwidth by enabling highly parallel access to file data. Unfortunately metadata access does not benefit from parallel data transfer, so metadata performance scaling is less common. To support metadata-intensive workloads, we offer a middleware design that layers on top of existing cluster file systems, adds support for load balanced and high-performance metadata operations without sacrificing data bandwidth. The core idea is to integrate a distributed indexing mechanism with a metadata optimized on-disk Log-Structured Merge tree layout. The integration requires several optimizations including cross-server split operations with minimum data migration, and decoupling of data and metadata paths. To demonstrate the feasibility of our approach, we implemented a prototype middleware layer GIGA+TableFS and evaluated it with a Panasas parallel file system. GIGA+TableFS improves metadata performance of PanFS by as much an order of magnitude, while still performing comparably on data-intensive workloads. Acknowledgements: This research is supported in part by The Gordon and Betty Moore Foundation, the University of Washington eScience Institute, NSF under award, SCI-0430781 and CCF-1019104, Qatar National Research Foundation 09-1116-1-172, DOE/Los Alamos National Laboratory, under contract number DE-AC52-06NA25396/161465-1, by Intel as part of the Intel Science and Technology Center for Cloud Computing (ISTC-CC), by gifts from Yahoo!, APC, EMC, Facebook, Fusion-IO, Google, Hewlett-Packard, Hitachi, Huawei, IBM, Intel, Microsoft, NEC, NetApp, Oracle, Panasas, Riverbed, Samsung, Seagate, STEC, Symantec, and VMware. We thank the member companies of the PDL Consortium for their interest, insights, feedback, and support.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要