GravityCam : higher resolution visible wide-field imaging Conference or Workshop Item

semanticscholar(2018)

引用 0|浏览0
暂无评分
摘要
The limits to the angular resolution has, during the latest 70 years, been obtainable from the ground only through extremely expensive adaptive optics facilities at large telescopes, and covering extremely small spatial areas per exposure. Atmospheric turbulence therefore limits image quality to typically 1 arcsec in practice. We have developed a new concept of ground-based imaging instrument called GravityCam capable of delivering significantly sharper images from the ground than is normally possible without adaptive optics. The acquisition of visible images at high speed without significant noise penalty has been made possible by advances in optical and near IR imaging technologies. Images recorded at high speed can be aligned before combination and can yield a 3-5 fold improvement in image resolution, or be used separately for high-cadence photometry. Very wide survey fields are possible with widefield telescope optics. GravityCam is proposed to be installed at the 3.6m New Technology Telescope (NTT) at the ESO La Silla Observatory in Chile, where it will greatly accelerate the rate of detection of Earth sized planets by gravitational microlensing. GravityCam will also improve substantially the quality of weak shear studies of dark matter distribution in distant clusters of galaxies and provide a vast dataset for asteroseismology studies. In addition, GravityCam promises to generate a unique data set that will help us understand of the population of the Kuiper belt and possibly the Oort cloud.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要