Number : WUCSE-2010-27 2010 Optimal Time Utility Based Scheduling Policy Design for Cyber-Physical Systems

semanticscholar(2016)

引用 0|浏览1
暂无评分
摘要
Classical scheduling abstractions such as deadlines and priorities do not readily capture the complex timing semantics found in many real-time cyber-physical systems. Time utility functions provide a necessarily richer description of timing semantics, but designing utility-aware scheduling policies using them is an open research problem. In particular, optimal utility accrual scheduling design is needed for real-time cyber-physical domains. In this paper we design optimal utility accrual scheduling policies for cyber-physical systems with periodic, non-preemptable tasks that run with stochastic duration. These policies are derived by solving a Markov Decision Process formulation of the scheduling problem. We use this formulation to demonstrate that our technique improves on existing heuristic utility accrual scheduling policies. Type of Report: Other Department of Computer Science & Engineering Washington University in St. Louis Campus Box 1045 St. Louis, MO 63130 ph: (314) 935-6160 Optimal Time Utility Based Scheduling Policy Design for Cyber-Physical Systems Terry Tidwell, Robert Glaubius, Christopher D. Gill and William D. Smart Department of Computer Science and Engineering Washington University in St. Louis Email: {ttidwell,rlg1,cdgill,wds}@cse.wustl.edu Abstract—Classical scheduling abstractions such as deadlines and priorities do not readily capture the complex timing semantics found in many real-time cyber-physical systems. Time utility functions provide a necessarily richer description of timing semantics, but designing utility-aware scheduling policies using them is an open research problem. In particular, optimal utility accrual scheduling design is needed for real-time cyber-physical domains. In this paper we design optimal utility accrual scheduling policies for cyber-physical systems with periodic, non-preemptable tasks that run with stochastic duration. These policies are derived by solving a Markov Decision Process formulation of the scheduling problem. We use this formulation to demonstrate that our technique improves on existing heuristic utility accrual scheduling policies.Classical scheduling abstractions such as deadlines and priorities do not readily capture the complex timing semantics found in many real-time cyber-physical systems. Time utility functions provide a necessarily richer description of timing semantics, but designing utility-aware scheduling policies using them is an open research problem. In particular, optimal utility accrual scheduling design is needed for real-time cyber-physical domains. In this paper we design optimal utility accrual scheduling policies for cyber-physical systems with periodic, non-preemptable tasks that run with stochastic duration. These policies are derived by solving a Markov Decision Process formulation of the scheduling problem. We use this formulation to demonstrate that our technique improves on existing heuristic utility accrual scheduling policies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要