Measurement of the partial width of the Z ~ into b / 7 final states using their semi-leptonic decays

P. Abreu,W. Adam,T. Adye,E. Agasi,G. D. Alekseev,P. Allen,S. Almehed,S. J. Alvsvaag,U. Amaldi,E. G. Anassontzis,A. Andreazza,P. Antilogus, W.-D. Ape,R. J. Apsimon,J.-E. Augustin,A. Augustinus,P. Baillon,P. Bambade,F. Barao,R. Barate,G. Barbiellini,D. Y. Bardin,A. Baroncelli,J. A. Barrio, W. Bart,M. J. Bates,M. Battaglia,M. Baubillier,K.-H. Becks,C. J. Beeston,M. Begalli,P. Beilliere,Yu. Belokopytov,P. Beltran,D. Benedic,M. Berggren,D. Bertrand,F. Bianchi,M. S. Bilenky,P. Billoir,J. Bjarne,D. Bloch,S. Blyth,V. Bocci,P. N. Bogolubov,T. Bolognese,M. Bonesini,W. Bonivento,P. S. L. Booth,P. Borgeaud,G. Borisov,H. Borner,C. Bosio,B. Bostjancic,S. Bosworth, O. Bother,B. Bouquet,C. Bourdarios,T. J. V. Bowcock,M. Bozzo,S. Braibant,P. Branchini,K. D. Brand,R. A. Brenner,H. Briand,C. Bricman,R. C. A. Brown,N. Brummer,J.-M. Brunet,L. Bugge,T. Buran,H. Burmeister,J. A. M. A. Buytaert,M. Caccia,M. Calvi,A. J. Camacho Rozas,T. Camporesi,V. Canale,F. Cao,F. Carena,L. Carroll,C. Caso,E. Castelli,M. V. Castillo Gimenez,A. Cattai,F. R. Cavallo,L. Cerrito,V. Chabaud,A. Chan,Ph. Charpentier,L. Chaussard,J. Chauveau,P. Checchia,G. A. Chelkov,L. Chevalier,P. Chliapnikov,V. Chorowicz,J. T. M. Chrin,R. Cirio,M. P. Clara,P. Collins,J. L. Contreras,R. Contri,E. Cortina, G. Cosine,F. Couchot,H. B. Crawley,D. Crennell, G. Crossetti,M. Crozon,J. Cuevas Maestro,S. Czellar,S. Dagoret,E. Dahl-Jensen, B. DalmagnC,M. Dam,G. Damgaard,G. Darbo,E. Daubie,A. Daum,P. D. Dauncey,M. Davenport,P. David,W. Da Silva,C. Defoix,D. Delikaris,B. A. Della Riccia,S. Delorme,P. Delpierre,N. Demaria,A. De Angelis,M. De Beer,H. De Boeck,W. De Boer,C. De Clercq,M. D. M. De Fez Laso,N. De Groot,C. De La Vaissiere,B. De Lotto,A. De Min,H. Dijkstra,L. Di Ciaccio,F. Djama,J. Dolbeau,M. Donszelmann, I . Doroba,M. Dracos,J. Drees,M. Dris,Y. Dufour,L.-O. Eek,P. A.-M. Eerola,R. Ehret,T. Ekelof,G. Ekspong,A. Elliot Peisert,J.-P. Engel,D. Fassouliotis, T. A. Fearnley,M. Feindt,A. Fenyuk,M. Fernandez Alonso,A. Ferrer,T. A. Filippas,A. Firestone,H. Foeth,E. Fokitis,F. Fontanelli,K. A. J. Forbes,B. Franek,P. Frenkiel,D. C. Fries,A. G. Frodesen,R. Fruhwirth,F. Fulda-Quenzer,K. Furnival,H. Furstenau,J. Fuster,G. Galeazzi,D. Gamba,C. Garcia,J. Garcia,C. Gaspar,U. Gasparini,Ph. Gavillet,E. N. Gazis,P. Giacomelli,R. Gokieli,B. Golob,V. M. Golovatyuk,J. J. Gomez Y Cadenas,A. Goobar,G. Gopa,M. Gorski,F. Grard,E. Graziani,G. Grosdidier,P. Grosse-Wiesmann,B. Grossetete,S. Gumenyuk,J. Guy,U. Haedinger,F. Hahn,M. Hahn,S. Haider,Z. Hajduk,A. Hakansson,A. Hallgren,K. Hamacher,G. Hamel De Monchenault,W. Hao,F. J. Harris,T. Henkes,J. J. Hernandez,P. Herquet,H. Herr,T. L Hessing,I. Hietanen,E. Higon,H. J. Hilke,S. D. Hodgson, T. Hofmok,R. Holmes,S.-O. Holmgren,D. Holthuizen,P. F. Honore,J. E. Hooper,M. Houlden,J. Hrubec,P. O. Hulth,K. Hultqvist,P. Ioannou,D. Isenhower,P.-S. Iversen,J. N. Jackson,P. Jalocha,G. Jarlskog,P. Jarry,B. Jean-Marie,E. K. Johansson,M. Jonker,L. Jonsson,P. Juillot,G. Kalkanis,G. Kalmus,F. Kapusta,M. Karlsson,E. Karvelas,S. Katsanevas,E. C. Katsoufis,R. Keranen,J. Kesteman,B. A. Khomenko,N. N. Khovanski,H. Klein,W. Klempt,A. Klovning,P. Kluit,A. Koch-Mehrin,J. H. Koehne,P. Kokkinias,M. Kopf, K. Korcy,A. V. Korytov,V. Kostioukhine,C. Kourkoumelis,O. Kouznetsov,P. H. Kramer,J. Krolikowski,I. Kronkvist,J. Krstic,U. Kruener-Marquis,K. Kulka,K. Kurvinen,C. Lacasta,C. Lambropoulos,J. W. Lamsa,L. Lanceri,V. Lapin, p. Laugier,R. Lauhakangas,G. Leder,F. Ledroit,R. Leitner,y. Lemoigne,j. Lemonne,G. Lenzen,V. Lepeltier,E. Lieb,D. Liko,E. Lillethun,J. Lindgren,R. Lindner,A. Lipniacka,I. Lippi,B. Loerstad,M. Lokajicek,J. G. Loken,A. Lopez-Fernandez,M. A. Lopez Aguera,M. Los,D. Loukas,J. J. Lozano,P. Lutz,L. Lyons,G. Maehlum,J. Maillard,A. Maltezos, F. Mand,J. Marco,M. Margoni,J.-C. Marin,A. Markou,T. Maron,S. Marti,L. Mathis,C. Matteuzzi, C. Matthiae,M. Michelotto,I. Mikulec,W. A. Mitaroff,G. V. Mitselmakher,U. Mjoernmark,T. Moa,R. Moeller,K. Moenig,M. R. Monge,H. Mueller,W. J. Murray,B. Muryn,G. Myatt,F. Naraghi,F. L. Navarria,P. Negri, S. B.,B. Nijjhar,P. E. S. Nilsen,P. Niss,V. Obraztsov

semanticscholar(2005)

引用 0|浏览10
暂无评分
摘要
sion 7.2, giving: e (b) = (8 + ~ ___ 2)10 -3. The corresponding value of the mean fraction of the beam energy taken by a B hadron in the fragmentation of a b quark is: + 0 02 X~=0.69 0"03-t-0.01. If the values of F~ and F n are taken from the Standard Model, the following value is obtained for the mean semi-leptonic braching fraction of B hadrons" BR~I=(10.1 +0.7)%. Taking the value of Fb~/F n from an independent analysis of DELPHI data based on the use of the boosted sphericity product, a value: BRs~ =(10.1 -+ 1.3)% is obtained. 1 I n t r o d u c t i o n In the Standard Model the Z ~ boson couples with different strengths to up and down type quarks. Experimentally jets produced by heavy quarks are the easiest to isolate because of the use of characteristic properties of heavy hadron production and decay. In the present paper, semi-leptonic decays of B hadrons are used to isolate the Z ~ decays into bb pairs. Studying the distributions of the lepton energy and transverse momentum relative to the jet axis allows one to select this channel. This measurement provides a value for the coupling of the Z ~ to b quarks weighted by the mean semi-leptonic branching fraction of B hadrons. DELPHI has measured previously the fraction of b quarks produced in hadronic events using the distribution of an event shape variable, the boosted sphericity product [1], and also by studying the impact parameter distribution of charged tracks at the level of the beam interaction point [2]. Combining these measurements allows one to give a value for the mean semi-leptonic branching fraction of B hadrons produced in Z ~ decays. The lepton energy distribution is sensitive to the energy distribution of heavy hadrons and a comparison between data and Monte Carlo simulations allows the fragmentation distributions of the b quark to be studied. Leptons coming from the decays of charm particles do not have such distinctive features as leptons from direct B decays and with the present statistics only very crude measurements could be extracted on c g production. For this reason, in the following analysis, it was assumed that the production of c quarks is given by the Standard Model. After a description of the event selection and of the aspects of the apparatus that are relevant for this analysis, measurements obtained with selected data samples enriched in muons and in electrons are presented separately and then combined to get the final results. 2 D a t a a n d d e t e c t o r 2.1 Event selection and apparatus For this analysis, the sample of 120 K hadronic events recorded in DELPHI in 1990, were required to fulfill the following selection criteria: at least 7 reconstructed charged particles with momentum greater than 100 MeV/c; a total charged energy greater than 14% of the centre of mass energy; the thrust axis of the event at more than 32 ~ from the beam axis; the muon chambers had to be operational for the muon analysis; the barrel electromagnetic calorimeter (the HPC) had to be operational for the electron analysis. The resulting samples of about 100 K events were analyzed for the presence of electron and muon candidates. To define the solid angle covered by the detectors the following conventions were used. The z axis was taken along the electron beam direction and the y axis was vertical. Polar coordinates of a point in the transverse (x, y) plane were labeled R and ~. The 0 angle was used to define a direction relative to the z axis. The muon identification relied mainly on the muon chambers, a set of drift chambers providing three dimensional information. In the barrel part of the detector (52~ 0 < 128 ~ there are 3 sets of chambers (see Fig. 1). One set of chambers is located just inside the hadron calorimeter and two sets are just beyond it, with 2 layers I X ' ~ DELPHI InteraCtive Analysis i
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要