An Expanded Cell Wall Damage Signaling Network Is Comprised Of The Transcription Factors Rlm1 And Sko1 In Candida Albicans

PLOS GENETICS(2020)

Cited 22|Views9
No score
Abstract
The human fungal pathogen Candida albicans is constantly exposed to environmental challenges impacting the cell wall. Signaling pathways coordinate stress adaptation and are essential for commensalism and virulence. The transcription factors Sko1, Cas5, and Rlm1 control the response to cell wall stress caused by the antifungal drug caspofungin. Here, we expand the Sko1 and Rlm1 transcriptional circuit and demonstrate that Rlm1 activates Sko1 cell wall stress signaling. Caspofungin-induced transcription of SKO1 and several Sko1-dependent cell wall integrity genes are attenuated in an rlm1 Delta/Delta mutant strain when compared to the treated wild-type strain but not in a cas5 Delta/Delta mutant strain. Genome-wide chromatin immunoprecipitation (ChIP-seq) results revealed numerous Sko1 and Rlm1 directly bound target genes in the presence of caspofungin that were undetected in previous gene expression studies. Notable targets include genes involved in cell wall integrity, osmolarity, and cellular aggregation, as well as several uncharacterized genes. Interestingly, we found that Rlm1 does not bind to the upstream intergenic region of SKO1 in the presence of caspofungin, indicating that Rlm1 indirectly controls caspofungin-induced SKO1 transcription. In addition, we discovered that caspofungin-induced SKO1 transcription occurs through self-activation. Based on our ChIP-seq data, we also discovered an Rlm1 consensus motif unique to C. albicans. For Sko1, we found a consensus motif similar to the known Sko1 motif for Saccharomyces cerevisiae. Growth assays showed that SKO1 overexpression suppressed caspofungin hypersensitivity in an rlm1 Delta/Delta mutant strain. In addition, overexpression of the glycerol phosphatase, RHR2, suppressed caspofungin hypersensitivity specifically in a sko1 Delta/Delta mutant strain. Our findings link the Sko1 and Rlm1 signaling pathways, identify new biological roles for Sko1 and Rlm1, and highlight the complex dynamics underlying cell wall signaling.Author summaryCandida albicans is the most common human fungal pathogen isolated in clinical settings. The echinocandin drug caspofungin is used to treat invasive candidiasis; however, the emergence of increasing echinocandin resistance underscores the need for new antifungal strategies. Elucidating the signaling mechanisms that govern caspofungin-induced tolerance has the potential to identify candidate proteins that could serve as novel therapeutic targets. Here, we expand the Rlm1 and Sko1 cell wall transcriptional network and find that Rlm1 indirectly regulates Sko1 signaling. Furthermore, we identify Sko1- and Rlm1-specific biological roles in caspofungin adaptation, such as osmoregulation and secretion. Lastly, we discover a protective role for glycerol in caspofungin tolerance. Overall, these findings provide mechanistic insight into the genetic and cellular bases underlying cell wall signaling in C. albicans.
More
Translated text
Key words
candida albicans,transcription factors rlm1,cell wall damage,cell wall
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined