A comparative study of isothermal nucleic acid amplification methods for SARS-CoV-2 detection at point of care

bioRxiv(2020)

引用 4|浏览6
暂无评分
摘要
The COVID-19, caused by the novel coronavirus SARS-CoV-2, has broken out of control all over the globe and put the majority of the world under lockdown. There have been no specific antiviral medications for SARS-CoV-2 while vaccines are still under development. Thus, rapid diagnosis and necessary public health measures are currently key parts to contain the pandemic. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) is the gold standard method for SARS-CoV-2 detection. However, this method is not suitable for point-of-care (POC) diagnosis because of the timeconsuming procedure, the requirements of biosafety conditions and expensive equipment. In this study, the colorimetric isothermal nucleic acid amplification tests (iNAATs) for SARS-CoV-2 based on loop-mediated isothermal amplification (LAMP), cross-priming amplification (CPA), and polymerase spiral reaction (PSR) were developed and compared. The three methods exhibited similar performance with the limit of detection (LOD) as low as just 1 copy per reaction when evaluated on the synthetic DNA fragments. The results can be read with naked eyes within 30 minutes without crossreactivity to closely related coronaviruses. When tested with SARS-CoV-2 extracted genomic-RNA, LAMP outperformed both CPA and PSR assays. Moreover, the direct detection of SARS-CoV-2 in simulated patient samples (oropharyngeal and nasopharyngeal swabs) by colorimetric iNAATs was also successful. Further preparation of the lyophilized reagents for LAMP reactions revealed that the freeze-dried, ready-to-use kit maintained the sensitivity and LOD value of the liquid assays. These results strongly indicate that the colorimetric lyophilized LAMP test kit developed herein is highly suitable for detecting SARS-CoV-2 at POC.
更多
查看译文
关键词
SARS-CoV-2,nucleic acid amplification test,LAMP,CPA,PSR,colorimetric,lyophilized kit,crude samples
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要