ALTERED MOLECULAR PATHWAYS OBSERVED IN NASO-OROPHARYNGEAL SAMPLES OF SARS-CoV-2 PATIENTS

medRxiv(2020)

引用 5|浏览20
暂无评分
摘要
COVID-19 or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appeared throughout the World and currently affected more than 3.6 million people and caused the death of around 252,000 people. The novel strain of the coronavirus disease is transmittable at a devastating rate with a high rate of severe hospitalization even more so for the elderly population. Currently around 50,000 patients are in a seriously critical situation. Although 1.2 million patients recovered from the disease there are still more than 2.1 Million active cases. Naso-oro-pharyngeal swab samples as the first step towards detecting suspected infection of SARS-CoV-2 provides a non-invasive method for PCR testing at a high confidence rate. Furthermore, proteomics analysis of PCR positive and negative naso-oropharyngeal samples provides information on the molecular level which highlights disease pathology. Samples from 15 PCR positive cases and 15 PCR negative cases were analyzed with nanoLC-MS/MS to identify the differentially expressed proteins. Proteomic analyses identified 207 proteins across the sample set and 17 of them were statistically significant. Protein-protein interaction analyses emphasized pathways like Neutrophil degranulation, Innate Immune System, Antimicrobial Peptides. Neutrophil Elastase (ELANE), Azurocidin (AZU1), Myeloperoxidase (MPO), Myeloblastin (PRTN3), Cathepsin G (CTSG) and Transcobalamine-1 (TCN1) were found to be significantly altered in naso-oropharyngeal samples of SARS-CoV-2 patients. The identified proteins are linked to alteration in the innate immune system specifically via neutrophil degranulation and NETosis.
更多
查看译文
关键词
naso-oropharyngeal,sars-cov
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要