Coordinated regulation of cellular identity-associated H3K4me3 breadth by the COMPASS family.

SCIENCE ADVANCES(2020)

引用 33|浏览37
暂无评分
摘要
Set1A and Set1B, two members of the COMPASS family of methyltransferases that methylate the histone H3 lysine 4 (H3K4) residue, have been accredited as primary depositors of global H3K4 trimethylation (H3K4me3) in mammalian cells. Our previous studies in mouse embryonic stem cells (ESCs) demonstrated that deleting the enzymatic SET domain of Set1A does not perturb bulk H3K4me3, indicating possible compensatory roles played by other COMPASS methyltransferases. Here, we generated a series of ESC lines harboring compounding mutations of COMPASS methyltransferases. We find that Set! B is functionally redundant to Set1A in implementing H3K4me3 at highly expressed genes, while MII2 deposits H3K4me3 at less transcriptionally active promoters. While Set1A-B/COMPASS is responsible for broad H3K4me3 peaks, MII2/COMPASS establishes H3K4me3 with narrow breadth. Additionally, MII2 helps preserve global H3K4me3 levels and peak breadth in the absence of Set1A-B activity. Our results illustrate the biological flexibility of such enzymes in regulating transcription in a context-dependent manner to maintain stem cell identity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要