Pterocarpus marsupium Roxb. heartwood extract synthesized chitosan nanoparticles and its biomedical applications

Journal of Genetic Engineering and Biotechnology(2020)

引用 13|浏览4
暂无评分
摘要
Background The point of the present investigation was to blend effective chitosan nanoparticles (CNPs) loaded with Pterocarpus marsupium (PM) heartwood extract and evaluate its biomedical applications. Various plant extract concentrations (PM-CNPs-1, PM-CNPs-2, PM-CNPs-3) are used to synthesize chitosan nanoparticles and optimized to acquire a stable nanoparticle formulation. The entrapment efficiency and in vitro release studies of the plant extract encapsulated in CNPs are estimated. The PM-loaded CNPs were characterized by X-ray diffraction, dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The synthesized chitosan nanoparticles were evaluated for their alpha-amylase inhibitory activity and inhibition of albumin denaturation activity. Results The XRD pattern of PM-CNPs shows less number of peaks at low intensity due to the interaction of chitosan with sodium tripolyphosphate. The FT-IR spectrum with peaks at 1639.55 and 1149.02 cm −1 confirms the formation of chitosan nanoparticles. The size of the nanoparticles ranges between 100 and 110 nm with spherical shape illustrated by SEM and TEM analysis. The nanoparticle formulation with 10% plant extract concentration (PM-CNPs-2) showed optimum particle size, higher stability, enhanced entrapment efficiency, and sustained drug release characteristics. Synthesized chitosan nanoparticles have shown a significant increase in alpha-amylase inhibition and appreciable anti-inflammatory activity as measured by inhibition of protein denaturation. Conclusions The investigation reports the eco-friendly, cost-effective method for synthesizing chitosan nanoparticles loaded with Pterocarpus marsupium Rox.b heartwood extract.
更多
查看译文
关键词
Chitosan nanoparticles,Pterocarpus marsupium,Alpha-amylase inhibitory activity,Anti-inflammatory activity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要