Analysis of adjunctive serological detection to nucleic acid test for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection diagnosis

International Immunopharmacology(2020)

引用 45|浏览15
暂无评分
摘要
Background The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused coronavirus disease 2019 (COVID-19) epidemic in China, December 2019. The clinical features and treatment of COVID-19 patients remain largely elusive. However, accurate detection is required for SARS-CoV-2 infection diagnosis. We aimed to evaluate the antibodies-based test and nucleic acid-based test for SARS-CoV-2-infected patients. Methods We retrospectively studied 133 patients diagnosed with SARS-CoV-2 and admitted to Renmin Hospital of Wuhan University, China, from January 23 to March 1, 2020. Demographic data, clinical records, laboratory tests, and outcomes were collected. Data were accessed by SARS-CoV-2 IgM-IgG antibody test and real-time reverse transcriptase PCR (RT-PCR) detection for SARS-CoV-2 nucleic acid in COVID-19 patients. Results Of 133 COVID-19 patients, there were 44 moderate cases, 52 severe cases, and 37 critical cases with no differences in gender and age among three subgroups. In RT-PCR detection, the positive rate was 65.9%, 71.2%, and 67.6% in moderate, severe, and critical cases, respectively. Whereas the positive rate of IgM/IgG antibody detection in patients was 79.5%/93.2%, 82.7%/100%, and 73.0%/97.3% in moderate, severe, and critical cases, respectively. Moreover, the IgM and IgG antibodies concentrations were also examined with no differences among three subgroups. Conclusion The IgM-IgG antibody test exhibited a useful adjunct to RT-PCR detection, and improved the accuracy in COVID-19 diagnosis regardless of the severity of illness, which provides an effective complement to the false-negative results from a nucleic acid test for SARS-CoV-2 infection diagnosis after onsets.
更多
查看译文
关键词
SARS-CoV-2,COVID-19,Severity of illness,IgM-IgG antibody test,Nucleic acid test
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要