Chrome Extension
WeChat Mini Program
Use on ChatGLM

Emerging Role of Elastin-Like Polypeptides in Regenerative Medicine

Vijaya Sarangthem, Thoudam Debraj Singh, Amit Kumar Dinda

ADVANCES IN WOUND CARE(2021)

Cited 18|Views6
No score
Abstract
Significance:Wound dressing based on naturally derived polymer provides a useful platform for treatment of skin injuries. Owing to the high mechanical strength and tunable structural and physicochemical properties of human elastin-like polypeptides (ELPs), they may be used as excellent materials for fabricating biocompatible scaffolds and other products for wound management. Recent Advances:Designing recombinant ELPs mimicking natural elastin to fabricate synthetic polymers suitable for human health care has generated significant interest. ELP-based cell-adhesive biopolymers have been used as an alternative for successful sutureless wound closure due to the physicochemical characteristics of the extracellular matrix. Critical Issues:Different systems of ELPs are being developed in the form of scaffolds, films, hydrogels, photo-linkable sheets, and composites linked with various types of growth factors for wound healing application. However, optimizing the quality and safety attributes for specific application needs designing of recombinant ELPs with structural and functional modifications as needed for the intervention. Future Direction:Chronic wounds are difficult to treat as the wound repair process is interrupted by conditions such as excessive inflammation, impaired extracellular matrix formation, and persistent infections. Conventional therapies such as skin substitutes or autologous skin grafts, in many cases, are unable to reestablish tissue homeostasis and proper healing. The development of innovative materials could induce a better regenerative healing response. In this study, we are reviewing different types of elastin-based materials for wound care application and their future prospects in regenerative medicine.
More
Translated text
Key words
elastin-like polypeptide,wound healing,bio-engineered,hydrogel,nanoparticle,scaffold,extra cellular matrix
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined