Supramolecular Exchange among Assemblies of Opposite Charge Leads to Hierarchical Structures.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY(2020)

引用 38|浏览8
暂无评分
摘要
Hierarchical assemblies of proteins into fibrillar structures occur in both physiologic and pathologic extracellular spaces and often involve interactions between oppositely charged peptide domains. However, the interplay between tertiary structure dynamics and quaternary hierarchical structure formation remains unclear. In this work, we investigate supramolecular mimics of these systems by mixing one-dimensional assemblies of small alkylated peptides bearing opposite charge and varying in peptide sequence. We found that assemblies with weak cohesive interactions readily create fibrous superstructures of bundled filaments as molecules redistribute upon mixing. Low cohesion allows molecules to escape from the original assemblies and exchange dynamics help them reassemble into electrostatically stable bundles. However, we also found that kinetic barriers can be encountered in these systems and limit formation of the hierarchical structures at pH values where charge densities are high. Increasing intermolecular cohesion using longer peptide sequences that form stable beta-sheets was found to suppress superstructure formation. Our findings suggest that low internal cohesion in protein systems could facilitate the conformational rearrangements required to create hierarchical structures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要