谷歌浏览器插件
订阅小程序
在清言上使用

Methods and outcomes of the COMRADE project-Design of robust Combined control for robotic spacecraft and manipulator in servicing missions: comparison between between Hinf and …

user-5d54d8d2530c705f51c2f7fc(2018)

引用 15|浏览8
暂无评分
摘要
Extending life or repairing damaged on-orbit assets is not only a very attractive economic option for satellite operators as it could potentially increase margins for commercial services or increasing delivered value of scientific missions, but it would also help reducing the number of debris objects in space. These types of servicing missions pose technical challenges never faced until now. Of utmost relevance is the autonomous control of several movable devices, whose dynamics are inter-coupled (e.g., spacecraft platform, robotic manipulator, and end-effector), needed to safely and effectively achieve the mission objective. In the frame of ESA-supported COMRADE study, fully combined control (single control system controlling simultaneously all movable devices) is proposed due to its higher improvement potential (propellant saving, performances increase, safety) w.r.t. tele-operation, decoupled and/or collaborative control (the last one characterized by the use of two different control systems for the spacecraft platform and robotic manipulator respectively but, differently to the decoupled version, with information/feedback about what the other control system intends to do). Two independent combined control designs are developed in COMRADE (H∞ and nonlinear Lyapunov-based), and tested. Each of them is applied for both Active Debris Removal (ADR) and servicing/re-fuelling mission scenarios. This paper presents: the processes of scenario analysis and derivation of COMRADE system requirements; a description of the design and setup for a Simulator, which included at its core the selection, prototyping and integration of algorithms for …
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要